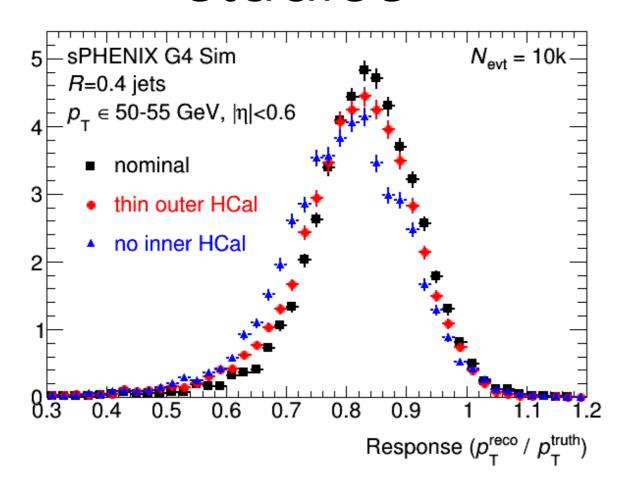
Jet Structure: Status and Plans

Dennis V. Perepelitsa, Rosi Reed Brookhaven National Laboratory

28 June 2016 sPHENIX Jet Structure Topical Group Meeting

Outline

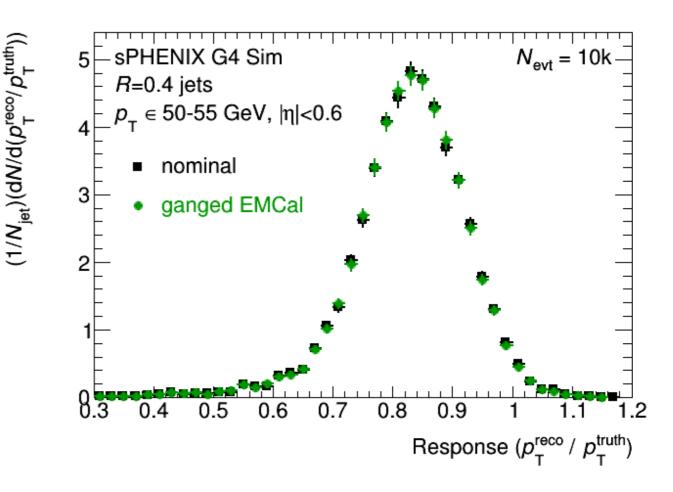
- Regular bi-weekly meeting times, Tuesdays at 11am
- In this meeting:
- 1. Summary of ALD Charge activities
- 2. Plans for future Jet Structure activities
 - → sample list of tasks & interested people
- 3. Discussion about upcoming Tracking Review
- In next meetings, will start asking for contributions
 - → in particular, will arrange talk by CMS HI expert on Particle Flow advantages in Pb+Pb collisions

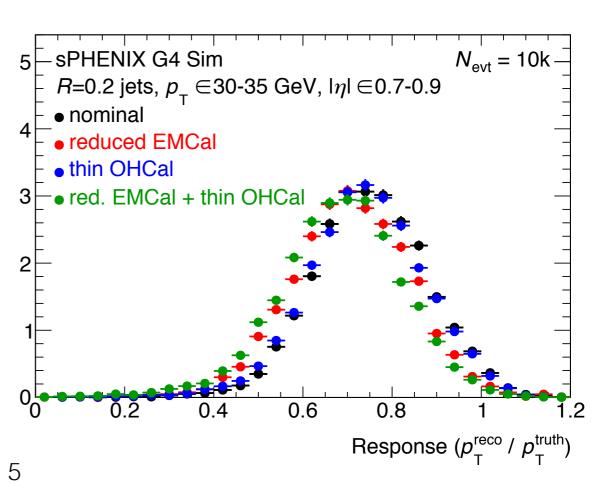

1. Response to ALD charge

- Spent April and May planning and executing response to ALD Charge
 - → in meetings, over mailing list, in person at sPHENIX Collab. Mtg.
 - → https://www.dropbox.com/s/qnlhe3uulw647yp/sPHENIX_scope_cost_060616.pdf?dl=0
- Original intention was to proceed along two fronts:
 - 1. evaluate jet performance under different calo configurations
 - → jet response, statistics for fully-contained jets, biases on measurements, etc.
 - → spent most of our effort here
 - 2. evaluate high- p_T tracking performance inside jets
 - → efficiency, resolution, fake rates
 - unfortunately, due to real-time developments in tracking simulations and software, this effort didn't mature

1. MC samples

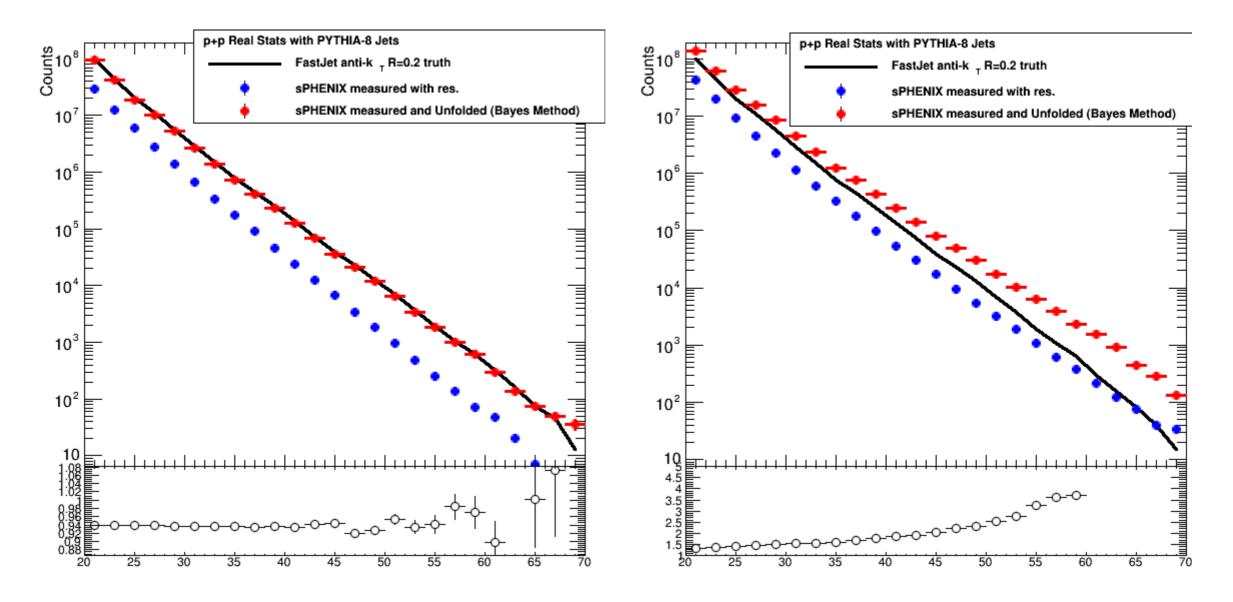
- To perform these studies, we used a common set of MC events
 - → with a well-defined generator-level selection
 - which were then simulated with Geant4 under specific, documented detector configurations
- HepMC Pythia8 dijet events at /direct/phenix+upgrades/decadal/ dvp/GeneratorInputFiles (kinematics chosen according to need):
 - ⇒ R=0.4, p_T =50-55 GeV, $|\eta|$ <0.6
 - ⇒ R=0.4, p_T =60-65 GeV, $|\eta|$ <0.6
 - \Rightarrow R=0.2, p_T=25-30 GeV, |η|<0.9
 - ⇒ R=0.2, p_T =30-35 GeV, 0.7< $|\eta|$ <0.9
- G4 Hits files prepared by Chris Pinkenburg, at /sphenix/sim/sim01/ production/aldcharge/pythia8/pythia8dijet
 - → for example: in R0p2pT30to35eta0p7to0p9, you will see: spacal1, hcalout_thin, cemcreduced, cemcreduced_hcalout_thin


1. Jet response studies



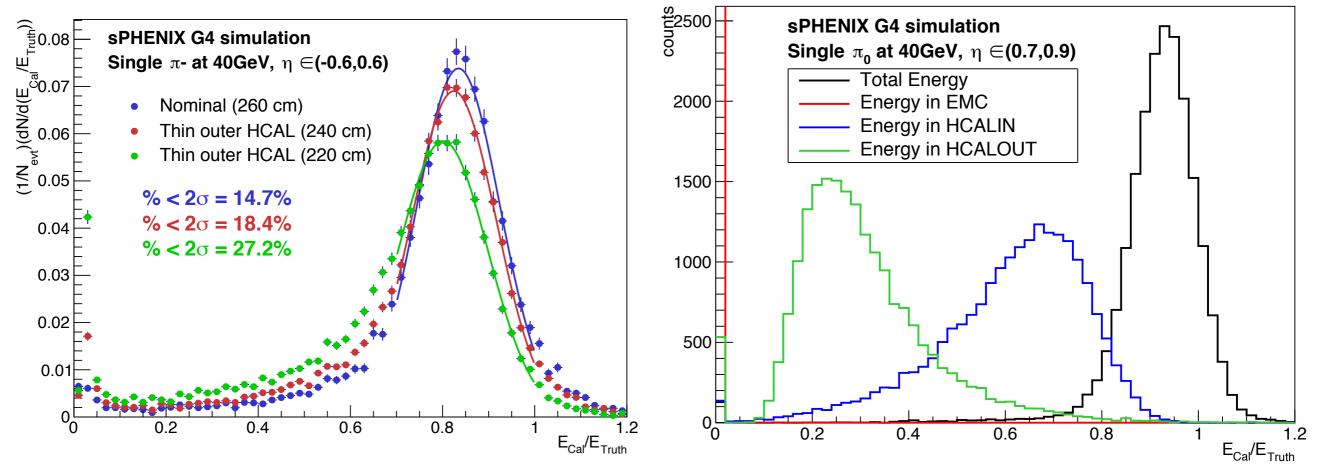
- Examining effect of different calo stack configurations
- → Upper left: HCal configurations for large-R, high-p_T jets
- → Upper right: ganged EMCal

 $(1/N_{\rm jet})({\rm d}N/{\rm d}(\rho_{\rm T}^{\rm reco}/\rho_{\rm T}^{\rm truth})$


→ Lower right: HCal x EMCal configurations for small-R, large-η, low-p_T jets

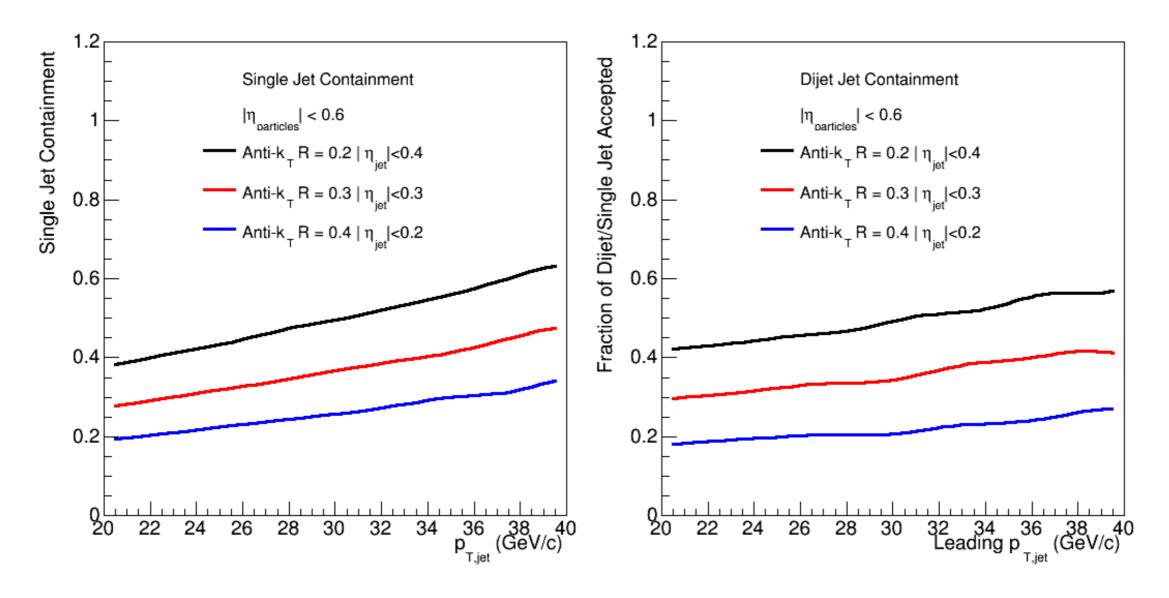
 $(1/N_{\rm jet})({\rm d}N/{\rm d}(p_{\rm T}^{\rm reco}/p_{\rm T}^{\rm truth}))$

1. Effects on unfolded measurements



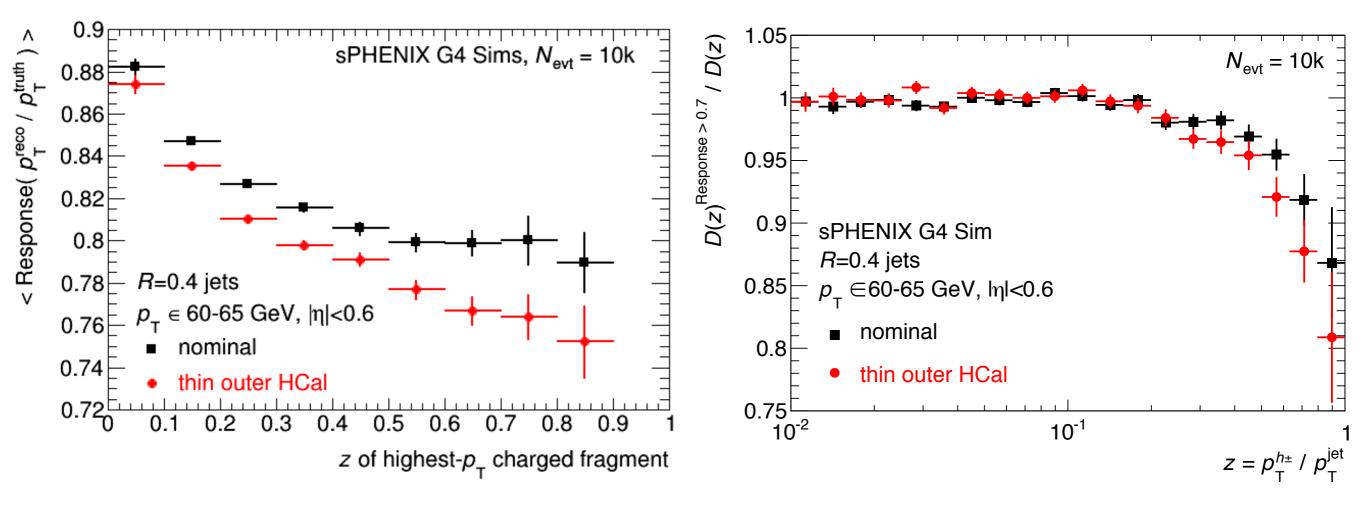
- Toy unfolding studies by Jamie Nagle of how mis-estimating response affects results (note: scenarios not necessarily equally likely)
- Left: missing a low-side tail causes overall E-scale shift
- Right: missing high-side tail has dramatic effects

1. Hadron response studies


Total Calorimeter Response (Cluster)

Misses EMC: eta = (0.7,0.9)

- Single hadron response studies by Kurt Hill
- Left: with thin OHCal, rate of punch through hadrons increases
- Right: with reduced-η EMCal, EM energy ends up in the I +OHCal


1. Jet containment studies

- Jet / dijet containment in reduced acceptance by Rosi Reed
 - → if all jets required to be fully contained in $|\eta|$ <0.6, what is the fraction of jets (left) and dijets (right) satisfying this requirement

8

1. Biases on FF measurements

- How strong is the correlation between fragmentation pattern (e.g. max- $z_{\rm charged}$) and response?
- Left: with thinner OHCal, stronger dependence of <Response> on z
- Right: with thinner OHCal, modestly larger bias on FF if one requires reasonably high Response
 - → also useful discussion threads with Megan, John L, Aaron, many others

2. Future activities

- Activities for ALD Charge were immediate-timescale and to-the-point
- Jet Structure group should transition to work towards longer term payoff:
 - develop reconstruction/analysis infrastructure in software
 - 2. benchmark detector performance with latest simulations & software updates
- On next several slides, some suggested topics are given
 - → volunteers or expressions of interest welcome
 - no prior "claim" is needed, names are just placeholders from previous meetings / conversations

Topics (1/4)

- Photon identification & performance
 - status: essentially no work at any point within sPHENIX development
 - \Rightarrow example task(s): develop shower shape cuts for \mathbf{y}/π^0 separation at low- p_T , isolation on top of Au+Au underlying event
 - → interested people: Justin Frantz + Ohio U group?
- Develop calorimeter clustering in Au+Au
 - → status: very simple geometric clustering procedure for p+p
 collisions
 - example tasks(s): implement modern clustering algorithms, create capability to run cluster on UE-subtracted towers
 - → interested people: Brandon McKinzie + MIT group?

Topics (2/4)

- Systematic studies of jet response
 - → status: MIE showed some selected results
 - ⇒ example task(s): test that UE subtraction still works, response/JES/JER differentially in jet $p_T / \eta / R /$ centrality
 - → interested people: n/a
- Track-cluster matching
 - → status: past work showed some track purity could be regained at loss of efficiency
 - example tasks(s): continue studies, include latest tracking configuration & developments in clustering
 - → interested people: Ron Belmont, Kurt Hill + Colorado group?

Topics (3/4)

- STAR/ALICE-style "recoil jet + event mixing" capability
 - → status: previous work has focused more on "ATLAS-style" explicit fake jet rejection
 - \Rightarrow example task(s): feasibility studies, basic p_T^{reco} $A \times \rho$ distributions for jets opposite high- p_T track trigger, event mixing
 - → interested people: n/a
- Particle Flow jet reconstruction
 - → status: previous work by Javier Orjuela-Koop & Colorado group showed only modest improvement over calo-based jet finding
 - example tasks(s): reboot with latest detector configuration / clustering tools & expertise from CMS?
 - → interested people: Rosi Reed + Lehigh group?

Topics (4/4)

Many other important tasks open for contributions:

- Flavor-dependence of jet performance
 - → evaluate separately for g vs. u/s/d vs. c vs. b
- Fake jet rejection via track, track-jet or cluster matching
 - using latest tracking configuration & clustering
- Blind unfolding tests of modified jet spectra
- Response to quenched jets
 - → interface JEWEL/PyQuen/QPythia with event generators and see if response is different
- ... etc.

Tracking Review

- BNL-charged review of tracking options, 7-9 September
 - → working to understand scope, timescales, deliverables, etc.
- Jet Structure group should contribute with studies of trackingrelated performance relevant to our physics scope
 - need to coordinate with Simulations group and Upsilon TG (where tracking performance is studied more generally)
 - plan to repeat common-use MC sample model
- In my opinion, most direct studies are likely to be:
 - → tracking performance at high-p_T in jets for FF measurements (where jet cone limits fake rate)
 - → tracking performance at all- p_T for missing- p_T or charged hadron spectra (possibly with calo-matching)

Outlook

- First of our regular bi-weekly meeting times,
 Tuesdays at 11am
 - → In next meetings, will start asking for contributions
- 1. Summary of ALD Charge activities
- 2. Discussed plans for future Jet Structure activities
 - volunteers welcome no prior experience or involvement necessary
- Should begin thinking about upcoming Tracking Review in early September